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Abstract

Knowledge distillation represents a critical approach for
developing lightweight, efficient machine learning models
that can perform comparably to larger, more complex ar-
chitectures. This study introduces an advanced knowledge
distillation methodology for YOLOv8-based object classi-
fication models, leveraging logit standardization and cur-
riculum temperature scheduling techniques. By transferring
knowledge from a large YOLOv8l teacher model to a com-
pact YOLOv8n student model, we demonstrate significant
performance improvements across challenging benchmark
datasets. Our experimental results reveal a 5%, 35.36%
and 37.61% relative increase in classification accuracy on
CIFAR-10, Tiny ImageNet and Oxford-IIIT-Pet respectively,
without compromising inference time. Comprehensive eval-
uations across CIFAR-10, Tiny ImageNet, and the Oxford-
IIIT-Pet datasets validate the proposed approach’s robust-
ness and generalizability. This research contributes to the
growing field of model optimization, offering a promising
strategy for developing efficient machine learning solutions
for resource-constrained environments.

1. Introduction

Knowledge distillation has emerged as a transformative
methodology for transferring sophisticated representations
from large, complex machine learning models to smaller,
more computationally efficient architectures. This approach
addresses a critical challenge in modern artificial intelli-
gence: developing high-performance models that can oper-
ate effectively within stringent computational and resource
constraints. By strategically mimicking the intricate out-
put distributions and intermediate representations of a so-
phisticated ”teacher” model, smaller ”student” models can
achieve performance levels approaching their larger coun-
terparts while dramatically reducing computational over-
head, memory requirements, and energy consumption. The
technique is particularly compelling in computer vision
classification tasks, where maintaining high accuracy is
paramount, yet deployment frequently occurs in resource-
limited environments such as edge devices, mobile plat-

forms, autonomous systems, and specialized scientific in-
strumentation. Traditional deep learning approaches often
require substantial computational resources, making them
impractical for deployment in scenarios with limited pro-
cessing power, constrained memory, or strict energy effi-
ciency requirements. Knowledge distillation offers an el-
egant solution to this fundamental optimization challenge,
enabling the development of compact, high-performance
models that can operate effectively across diverse compu-
tational contexts.

In this study, we explore advanced knowledge distilla-
tion techniques specifically optimized for object classifica-
tion models within the YOLOv8 [3] architectural frame-
work. YOLO (You Only Look Once) models have gar-
nered significant attention in computer vision research
for their exceptional balance of speed and accuracy, with
the YOLOv8 series offering specialized variants designed
for diverse application domains. Our research strate-
gically leverages a high-capacity YOLOv8-Large model
(YOLOv8l) as the teacher, meticulously transferring its
learned representational knowledge to a more compact
YOLOv8-Nano variant (YOLOv8n) fine-tuned for classifi-
cation tasks. To maximize the efficacy of knowledge trans-
fer, we introduce two sophisticated distillation techniques:
logit standardization and curriculum temperature schedul-
ing. These innovative approaches are engineered to sta-
bilize and refine the knowledge transfer process, ensuring
precise and meaningful information transmission between
model architectures while mitigating potential representa-
tional degradation.

Our experimental results demonstrate significant perfor-
mance enhancements for the YOLOv8 nano model, in-
cluding a statistically significant 5% increase in classifi-
cation accuracy on the CIFAR-10 dataset, achieved with-
out compromising inference time or computational over-
head. By implementing these advanced distillation tech-
niques, we enable the lightweight student model to effec-
tively navigate fine-grained classification challenges and
complex real-world scenarios without substantial accuracy
trade-offs.
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2. Related Work
Knowledge distillation (KD) has emerged as a critical
paradigm for model compression and performance opti-
mization, evolving from traditional logit-based approaches
to sophisticated multi-modal knowledge transfer tech-
niques. This research synthesizes advanced logit-based
methodologies to enhance the performance of lightweight
object classification models.

2.1. Logit-Based Distillation

Pioneered by Hinton et al. [2], logit-based distillation
represents a fundamental approach to knowledge transfer
between neural network architectures. The core mecha-
nism involves transforming teacher model logits through
temperature-based softmax scaling, which enables more nu-
anced probability distributions and facilitates the student
model’s learning of complex inter-class relationships. Re-
cent advancements have significantly refined this founda-
tional approach, introducing two critical techniques that ad-
dress inherent limitations in traditional knowledge distilla-
tion:

2.2. Logit Standardization

Proposed by Sun et al. [8], logit standardization addresses
the fundamental challenge of logit variability during knowl-
edge transfer. By implementing a normalization process be-
fore softmax transformation, this technique ensures:

More uniform contribution of individual logits to the fi-
nal probability distribution Reduced susceptibility to high-
variance logits that might introduce computational noise
Enhanced stability in knowledge transfer, particularly in
complex, fine-grained classification scenarios

The standardization process effectively mitigates poten-
tial information distortion, creating a more robust knowl-
edge transfer mechanism that preserves the intricate repre-
sentational learning of the teacher model.

2.3. Curriculum Temperature Knowledge Distilla-
tion (CT-KD)

Li et al. [6] introduced a dynamic temperature scheduling
approach that fundamentally reimagines the knowledge dis-
tillation learning process. Unlike static temperature-based
methods, CT-KD implements a progressive learning strat-
egy characterized by:

Initial high-temperature phases that facilitate smoother,
more generalized learning Gradual temperature reduction
to enable increasingly precise feature discrimination A
curriculum-like learning mechanism that mimics natural
cognitive skill acquisition

This approach recognizes that knowledge transfer is not
a uniform process but a nuanced progression from broad
conceptual understanding to refined, task-specific represen-
tations.

2.4. Synergistic Knowledge Transfer

The combined application of logit standardization and cur-
riculum temperature scheduling represents a sophisticated
approach to knowledge distillation. By addressing both the
statistical properties of logit distributions and the dynamic
learning trajectory of the student model, these techniques
offer a comprehensive strategy for efficient model compres-
sion and performance optimization.

3. Methodology

3.1. YOLO Architecture for Classification

The YOLO framework, originally pioneered for object de-
tection, has been strategically adapted for image classifi-
cation tasks through architectural modifications and spe-
cialized training objectives. Given an input image I , the
YOLO classification model generates a probabilistic map-
ping p = f(I; θ), where f represents the neural network
transformation and θ denotes the model’s learned parame-
ters.

The classification pipeline comprises three critical
stages:
• Hierarchical Feature Extraction: The input image tra-

verses through a multi-scale convolutional backbone net-
work, systematically extracting hierarchical spatial and
semantic representations. This process captures increas-
ingly abstract features, from low-level edge and texture
information to high-level semantic concepts.

• Feature Aggregation: Extracted features undergo global
average pooling, a dimensionality reduction technique
that condenses spatial feature maps into a compact, se-
mantically rich feature vector. This operation effectively
captures the global context while maintaining computa-
tional efficiency.

• Probabilistic Classification: The aggregated feature
vector is processed through fully connected layers with
a softmax activation, generating a normalized probability
distribution across predefined class categories.
The model’s optimization leverages cross-entropy loss,

formally defined as:

LCE = −
C∑

c=1

yc log(pc), (1)

where yc represents the ground truth binary indicator for
class c and pc denotes the model’s predicted probability.
This loss function incentivizes the model to maximize the
likelihood of correct class prediction.

Our research introduces a specialized modification to
the standard YOLOv8 architecture to optimize performance
for fine-grained classification tasks, particularly on datasets
like CIFAR-10. This adaptation addresses critical chal-
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lenges in transferring object detection architectures to clas-
sification domains.

3.1.1 Architectural Modifications

The modified YOLOv8 model undergoes a systematic re-
structuring to enhance its classification capabilities:
• Backbone Preservation: The original convolutional

backbone is retained, preserving the hierarchical feature
extraction capabilities of the YOLOv8 architecture. Copy

• Feature Dimensionality Handling: A dynamic feature
extraction mechanism determines the optimal number of
feature dimensions from the final convolutional layer,
specifically the C2f layer’s cv2 convolution.

• Classification Head Redesign: The original detection
head is replaced with a streamlined classification pipeline
comprising: - Adaptive average pooling to standardize
spatial features - Flattening of feature representations -
Dropout regularization - A final linear classification layer

3.2. Knowledge Distillation Formulation

The knowledge distillation loss integrates two complemen-
tary loss components:
1. Soft Target Loss: Kullback-Leibler (KL) divergence

between temperature-scaled logits, capturing nuanced
inter-class relationships.

2. Hard Target Loss: Standard cross-entropy loss with
ground truth labels, ensuring direct supervised learning.
The comprehensive loss function is formally expressed

as:

L = (1− α)LCE(y, σ(z
s)) + αT 2LKL(q

t∥qs) (2)

where α modulates the contribution of soft and hard tar-
gets, T represents the temperature scaling parameter, and σ
denotes the softmax activation.

3.3. Logit Standardization

Following the methodology proposed by Sun et al. [8], logit
standardization is implemented through:

ẑ =
z − µz

σz + ϵ
(3)

This normalization mitigates logit variance, promoting
more stable and informative knowledge transfer by ensuring
uniform contribution across feature dimensions.

3.4. Curriculum Temperature Scheduling

The temperature parameter evolves dynamically throughout
training:

T (e) = max(1.0, T0 · γe) (4)

This adaptive scheduling facilitates a progressive learn-
ing regime: initial high-temperature phases enable broad
feature exploration, while gradually reduced temperatures
encourage refined, discriminative feature learning.

4. Experimentation Details

4.1. Model Details and Pre-Training

Dataset The experiments conducted in this study lever-
age the CIFAR-10 [5] and Tiny-ImageNet [1] datasets to
pre-train and evaluate the performance of YOLOv8-based
teacher and student models. CIFAR-10 is a well-established
dataset comprising 60,000 images across 10 classes, of-
fering a relatively simpler classification task. In contrast,
Tiny-ImageNet, which includes 100,000 images from 200
classes, provides a more challenging and diverse dataset.
This combination of datasets allows for a comprehensive
assessment of the models’ abilities to handle standard clas-
sification tasks.

For the teacher model, YOLOv8Large (YOLOv8l)
was selected due to its robust architecture, high capac-
ity, and strong baseline performance. For the student
model, YOLOv8Nano (YOLOv8n) was chosen, as it is a
lightweight variant designed for resource-constrained en-
vironments. Table 1 summarize the baseline performance
of both models on CIFAR-10 and Tiny-ImageNet, respec-
tively.

As illustrated in the tables, the teacher model,
YOLOv8Large, significantly outperforms the student
model, YOLOv8Nano, across both datasets in terms of
accuracy. However, these gains come at the cost of
higher inference times and increased computational com-
plexity, as indicated by the number of parameters and
floating-point operations (FLOPs). The high accuracy of
YOLOv8Large underscores its potential as a strong teacher
model for knowledge distillation, while the efficiency of
YOLOv8Nano highlights its suitability for deployment in
real-time and resource-constrained scenarios.

Evaluation metrics. We employ top-1 accuracy, preci-
sion, recall@1 and the F1 score to comprehensively evalu-
ate model performance.

Training details. The student model is trained using
a knowledge distillation framework that uses a pre-trained
teacher model. An Adam optimizer [4] with an initial learn-
ing rate of 0.001 is employed, coupled with a ReduceLROn-
Plateau scheduler to adapt the learning rate based on loss
trends. The batch size is set to 32, and gradient clipping
with a max norm of 1.0 is applied to ensure stability. The
distillation loss combines cross-entropy on true labels and
Kullback-Leibler (KL) divergence between teacher and stu-
dent logits, weighted by α = 0.7. A dynamic temperature
scaling mechanism is used, starting at T = 5.0 and grad-
ually adjusted over 10 epochs. Training experiments were
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Figure 1. CIFAR-10 Classwise Performance Matrix

Figure 2. Oxford-IIIT Pets Classwise Performance Matrix

conducted on an NVIDIA 3050Ti laptop GPU using the Py-
Torch framework.

4.2. Results

Hyperparameters such as the distillation loss weight α, tem-
perature T , and learning rate were optimized through a grid
search.

The experimental results reveal clear trends in the effec-
tiveness of knowledge distillation across different datasets,
as summarized in Table 1. Below is an analysis of the key
findings:

CIFAR-10 Performance Analysis. The distilled
YOLOv8Nano model improved accuracy by 5.22% over its
baseline. Notably, this improvement comes with a reduc-
tion in inference time from 7.9 ms to 5.7 ms. This suggests
that knowledge distillation not only enhances the student
model’s accuracy but also optimizes its computational effi-
ciency. Figure 1 shows a class-wise heatmap of CIFAR-10
performance, illustrating that the model’s ability to gener-
alize improved across various classes. Classes with previ-
ously lower baseline accuracies, such as “cat” and “horse,”

exhibited noticeable gains, suggesting the transfer of nu-
anced feature representations from the teacher model.

Tiny-ImageNet Performance Analysis. Tiny-
ImageNet presented a more complex challenge, with a
35.36% relative accuracy improvement in the distilled
YOLOv8Nano. The jump from 33.80% to 43.56%
indicates that the distillation framework effectively bridges
the knowledge gap between the teacher and student models
for fine-grained tasks. This performance boost, coupled
with a reduced inference time, highlights the potential of
this approach for real-time, high-complexity visual tasks in
resource-constrained environments.

Trade-offs and Efficiency. One of the most compelling
aspects of the distilled models is their efficiency. Across all
datasets, inference times remained almost the same as the
nano model or lower while accuracy increased. This is par-
ticularly valuable for deployment in latency-sensitive envi-
ronments where both speed and precision are critical. The
consistent reduction in inference time demonstrates the dual
benefit of knowledge distillation in achieving high accuracy
without compromising speed.

Overall, the distillation process successfully balances
performance and computational efficiency, positioning dis-
tilled YOLOv8Nano models as strong candidates for appli-
cations in constrained environments, such as autonomous
systems and mobile devices. These results reaffirm the
broader potential of knowledge distillation in democratiz-
ing deep learning by making high-accuracy models accessi-
ble in real-world scenarios without the need for significant
hardware resources.

4.3. Fine-Grained Classification

Dataset selection and motivation. The Oxford-IIIT Pets
[7] dataset was chosen to evaluate the generalization capa-
bility of the distilled models on a fine-grained classifica-
tion task. Unlike CIFAR-10, which primarily focuses on
inter-class differences, this dataset comprises 37 classes of
pet breeds, including visually similar cats and dogs. Fine-
grained classification tasks such as these pose a significant
challenge due to the subtle intra-class variations and shared
visual features across classes. Notably, the poor perfor-
mance of the baseline models on CIFAR-10’s cat and dog
classes, as illustrated in Figure 1, highlighted the need to
assess whether knowledge distillation could improve model
performance on datasets with subtle distinctions. This tran-
sition to a more complex dataset ensures a rigorous eval-
uation of the student model’s ability to generalize beyond
coarse-grained tasks.

Relevance of fine-grained evaluation. Generalization
to fine-grained datasets is a critical test for lightweight mod-
els, particularly in applications where distinguishing subtle
visual cues is essential, such as medical imaging or species
recognition. Unlike simpler tasks, fine-grained classifica-
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Dataset Model Params (M) FLOPs (B) Accuracy (%) Inference Time (ms)

CIFAR-10
YOLOv8l Baseline 35.7 99.7 84.67 13.5
YOLOv8n Baseline 2.7 4.3 75.04 7.9
YOLOv8n Distilled 2.7 4.3 78.96 5.7

Tiny-ImageNet
YOLOv8l Baseline 35.7 99.7 57.38 8.6
YOLOv8n Baseline 2.7 4.3 33.80 4.6
YOLOv8n Distilled 2.7 4.3 43.56 5.3

Oxford Pets
YOLOv8l Baseline 35.7 99.7 84.46 13.8
YOLOv8n Baseline 2.7 4.3 47.62 6.5
YOLOv8n Distilled 2.7 4.3 65.49 5.3

Table 1. Performance comparison of YOLOv8l Baseline, YOLOv8n Baseline, and YOLOv8n Distilled on CIFAR-10, Tiny-ImageNet, and
Oxford-IIIT Pets datasets.

tion requires the model to learn high-resolution feature rep-
resentations to effectively separate visually similar classes.
By evaluating the distilled YOLOv8Nano on Oxford-IIIT
Pets, we aimed to investigate whether the knowledge trans-
fer process enabled the student model to address its ob-
served limitations on CIFAR-10 and extend its capabili-
ties to handle more challenging scenarios. This step also
provides insight into the true level of detail that the lim-
ited YOLOv8n framework could capture from the teacher
model.

Results and observations. The results in Table 1
demonstrate the effectiveness of knowledge distillation for
fine-grained classification. The baseline YOLOv8Nano
model achieved an accuracy of only 47.62% on the Oxford-
IIIT Pets dataset, reflecting its difficulty in learning fine-
grained features. In contrast, the distilled YOLOv8Nano
model achieved a significant improvement, with an accu-
racy of 65.49%, representing a 37.61% relative gain. This
improvement was achieved without additional computa-
tional overhead, as evidenced by the consistent parameter
count and reduced inference time of 5.3 ms.

5. Analysis
Challenges of Knowledge Distillation on Smaller Mod-
els.

While knowledge distillation has shown considerable
improvements in model performance, there are inherent
limits to what a smaller model, such as YOLOv8Nano, can
achieve due to its reduced computational capacity.

The baseline YOLOv8Nano model exhibits notable per-
formance deficiencies, particularly in handling complex or
fine-grained classification tasks. This is reflected in the
precision, recall, and F1-score performance metrics, where
the distilled model, although improved, still lags behind
the large teacher model (YOLOv8Large) across multiple

classes. For example, while YOLOv8Large achieves an F1-
score of 0.85 for classifying dogs, the distilled model only
reaches an F1-score of 0.67, despite showing improvements
from the baseline (0.56).

The performance heatmap for both models (as seen in the
precision, recall, and F1-score values) reveals a clear dispar-
ity, indicating that although knowledge distillation aids in
transferring knowledge, the smaller model’s limited com-
putational resources restrict its ability to fully capture the
subtle distinctions required for accurate fine-grained classi-
fication.

Computational Limits and Fine-Grained Classifica-
tion.

The smaller model, despite its improved performance
through distillation, still faces significant challenges in clas-
sifying breeds that exhibit minimal intra-class variance. For
instance, in classes where fur patterns, shapes, and sizes are
similar across breeds, the YOLOv8Nano model struggles to
differentiate these subtle features.

The precision for breeds like ”Siamese” and ”Bengal”
cats in the distilled model (0.72 and 0.75 respectively) re-
mains lower than the teacher model’s precision values (0.89
and 0.81), suggesting that the distilled model still lacks
the fine-grained feature extraction capability of the larger
model.

These challenges stem from the fundamental limitations
of smaller architectures, which, even with the knowledge
distillation process, cannot fully replicate the capacity of
larger models to discern such intricate differences. This is
a key takeaway when evaluating the effectiveness of knowl-
edge distillation: while distillation significantly boosts per-
formance, it cannot fully overcome the computational and
representational constraints of smaller models, especially in
highly nuanced tasks.

Generalization Limits. The performance improve-

5



ments achieved through knowledge distillation are indica-
tive of the potential for generalization, but they also high-
light the limits of such methods when applied to tasks with
extreme intra-class variability. While the distilled model
improves overall accuracy and exhibits better performance
in several classes, certain breeds with minimal distinguish-
ing features remain challenging. For instance, breeds such
as ”Persian” and ”Ragdoll” cats still present difficulties, as
reflected by the relatively low recall and precision scores in
the heatmap, where values hover around 0.40–0.50 for these
classes. This underscores the importance of the model’s ca-
pacity to discern subtle features for high-accuracy classifi-
cation, which the smaller model is unable to achieve even
with distillation. The distilled model may show a higher re-
call rate than the baseline, but it still fails to reach the con-
sistency and robustness seen in the teacher model, empha-
sizing the need for more sophisticated strategies like con-
trastive loss or multi-scale feature learning to enhance fea-
ture separability in such fine-grained tasks.

Future Directions. To overcome these limitations, fu-
ture work could explore enhancing the distilled model’s
capacity to capture fine-grained distinctions through meth-
ods that improve its representational power. Approaches
such as multi-resolution input images, contrastive learning
techniques, or domain-specific feature augmentation could
provide the necessary fine-grained features that the smaller
model struggles to capture. Additionally, leveraging ex-
ternal knowledge sources, such as textual descriptions of
breeds or advanced data augmentation techniques, could
further improve the model’s robustness in fine-grained clas-
sification. These directions aim to address the challenges
highlighted in the error analysis, where the model fre-
quently misclassifies breeds with subtle visual differences.
While knowledge distillation can provide a boost, the com-
putational limitations of smaller models necessitate further
innovation to bridge the gap in fine-grained tasks.
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A. Loss Graphs and Confusion Matrices

A.1. Training Losses for Knowledge Distillation

A.1.1 Oxford-IIIT Pets Dataset Training Loss

Figure 3. Training Loss curve for the Oxford-IIIT Pets Dataset.
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A.1.2 CIFAR-10 Pets Dataset Training Loss

Figure 4. Training Loss curve for the CIFAR-10 Dataset.

A.1.3 Tiny-ImageNet Dataset Training Loss

Figure 5. Training Loss curve for the Tiny Dataset.

A.2. Confusion Matrices

A.2.1 CIFAR Dataset

Figure 6. Confusion Matrix for CIFAR Dataset using different
models.

.
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A.2.2 Oxford-IIIT Pets Dataset

Figure 7. Confusion Matrix for Oxford-IIIT Pets Dataset using
different models.
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